SpecialistOff.NET / Вопросы / Статьи / Фрагменты кода / Резюме / Метки / Помощь / Файлы

Назад

What is a Pattern?


Метки: python

Initially, you can think of a pattern as an especially clever and insightful way of solving a particular class of problems. That is, it looks like a lot of people have worked out all the angles of a problem and have come up with the most general, flexible solution for it. The problem could be one you have seen and solved before, but your solution probably didn’t have the kind of completeness you’ll see embodied in a pattern.

Although they’re called “design patterns,” they really aren’t tied to the realm of design. A pattern seems to stand apart from the traditional way of thinking about analysis, design, and implementation. Instead, a pattern embodies a complete idea within a program, and thus it can sometimes appear at the analysis phase or high-level design phase. This is interesting because a pattern has a direct implementation in code and so you might not expect it to show up before low-level design or implementation (and in fact you might not realize that you need a particular pattern until you get to those phases).

The basic concept of a pattern can also be seen as the basic concept of program design: adding a layer of abstraction. Whenever you abstract something you’re isolating particular details, and one of the most compelling motivations behind this is to separate things that change from things that stay the same. Another way to put this is that once you find some part of your program that’s likely to change for one reason or another, you’ll want to keep those changes from propagating other changes throughout your code. Not only does this make the code much cheaper to maintain, but it also turns out that it is usually simpler to understand (which results in lowered costs).

Often, the most difficult part of developing an elegant and cheap-to-maintain design is in discovering what I call “the vector of change.” (Here, “vector” refers to the maximum gradient and not a container class.) This means finding the most important thing that changes in your system, or put another way, discovering where your greatest cost is. Once you discover the vector of change, you have the focal point around which to structure your design.

So the goal of design patterns is to isolate changes in your code. If you look at it this way, you’ve been seeing some design patterns already in this book. For example, inheritance can be thought of as a design pattern (albeit one implemented by the compiler). It allows you to express differences in behavior (that’s the thing that changes) in objects that all have the same interface (that’s what stays the same). Composition can also be considered a pattern, since it allows you to change-dynamically or statically-the objects that implement your class, and thus the way that class works.

Another pattern that appears in Design Patterns is the iterator, which has been implicitly available in for loops from the beginning of the language, and was introduced as an explicit feature in Python 2.2. An iterator allows you to hide the particular implementation of the container as you’re stepping through and selecting the elements one by one. Thus, you can write generic code that performs an operation on all of the elements in a sequence without regard to the way that sequence is built. Thus your generic code can be used with any object that can produce an iterator.