SpecialistOff.NET / Вопросы / Статьи / Фрагменты кода / Резюме / Метки / Помощь / Файлы
НазадМетки: airflow apache airflow
The kubernetes executor is introduced in Apache Airflow 1.10.0. The Kubernetes executor will create a new pod for every task instance.
Example helm charts are available at scripts/ci/kubernetes/kube/{airflow,volumes,postgres}.yaml
in the source distribution. The volumes are optional and depend on your configuration. There are two volumes available:
Dags:
By storing dags onto persistent disk, it will be made available to all workers
Another option is to use git-sync
. Before starting the container, a git pull of the dags repository will be performed and used throughout the lifecycle of the pod
Logs:
By storing logs onto a persistent disk, the files are accessible by workers and the webserver. If you don’t configure this, the logs will be lost after the worker pods shuts down
Another option is to use S3/GCS/etc to store logs
from airflow.contrib.operators import KubernetesOperator from airflow.contrib.operators.kubernetes_pod_operator import KubernetesPodOperator from airflow.contrib.kubernetes.secret import Secret from airflow.contrib.kubernetes.volume import Volume from airflow.contrib.kubernetes.volume_mount import VolumeMount from airflow.contrib.kubernetes.pod import Port secret_file = Secret('volume', '/etc/sql_conn', 'airflow-secrets', 'sql_alchemy_conn') secret_env = Secret('env', 'SQL_CONN', 'airflow-secrets', 'sql_alchemy_conn') secret_all_keys = Secret('env', None, 'airflow-secrets-2') volume_mount = VolumeMount('test-volume', mount_path='/root/mount_file', sub_path=None, read_only=True) port = Port('http', 80) configmaps = ['test-configmap-1', 'test-configmap-2'] volume_config= { 'persistentVolumeClaim': { 'claimName': 'test-volume' } } volume = Volume(name='test-volume', configs=volume_config) affinity = { 'nodeAffinity': { 'preferredDuringSchedulingIgnoredDuringExecution': [ { "weight": 1, "preference": { "matchExpressions": { "key": "disktype", "operator": "In", "values": ["ssd"] } } } ] }, "podAffinity": { "requiredDuringSchedulingIgnoredDuringExecution": [ { "labelSelector": { "matchExpressions": [ { "key": "security", "operator": "In", "values": ["S1"] } ] }, "topologyKey": "failure-domain.beta.kubernetes.io/zone" } ] }, "podAntiAffinity": { "requiredDuringSchedulingIgnoredDuringExecution": [ { "labelSelector": { "matchExpressions": [ { "key": "security", "operator": "In", "values": ["S2"] } ] }, "topologyKey": "kubernetes.io/hostname" } ] } } tolerations = [ { 'key': "key", 'operator': 'Equal', 'value': 'value' } ] k = KubernetesPodOperator(namespace='default', image="ubuntu:16.04", cmds=["bash", "-cx"], arguments=["echo", "10"], labels={"foo": "bar"}, secrets=[secret_file, secret_env, secret_all_keys], ports=[port] volumes=[volume], volume_mounts=[volume_mount] name="test", task_id="task", affinity=affinity, is_delete_operator_pod=True, hostnetwork=False, tolerations=tolerations, configmaps=configmaps )
See airflow.contrib.operators.kubernetes_pod_operator.KubernetesPodOperator
Your local Airflow settings file can define a pod_mutation_hook
function that has the ability to mutate pod objects before sending them to the Kubernetes client for scheduling. It receives a single argument as a reference to pod objects, and is expected to alter its attributes.
This could be used, for instance, to add sidecar or init containers to every worker pod launched by KubernetesExecutor or KubernetesPodOperator.
def pod_mutation_hook(pod: Pod): pod.annotations['airflow.apache.org/launched-by'] = 'Tests'